Peter Beelen and Mrinmoy Datta have just submitted an article in which a conjecture from 1991 by Sørensen is partially resolved. In this conjecture a formula for the minimum distance of q^2-ary codes constructed from Hermitian surfaces is given. Equivalently, the conjecture gives a formula for the maximal number of GF(q^2)-rational points that a Hermitian surface and a hypersurface of degree d>1 can have. For d=2, the conjecture was solved in 2007 by Edoukou, but since then no progress has been made until now. We show that the conjecture is correct for d=3 as long as q>7. A preprint can be found here.