The paper “An Fp2-maximal Wiman’s sextic and its automorphisms” by Maria, Massimo Giulietti, Motoko Kawakita and Stefano Lia appeared online in the journal Advances in Geometry. In this paper Maria, Massimo, Motoko and Stefano study a sextic curve introduced in 1895 by Wiman as a Riemann surface over the complex field, but seen over finite fields. They showed that its full automorphism group is isomorphic to the symmetric group S5, generalizing Wiman’s result. It is also shown that when the finite field has cardinality 19^2 then the Wiman’s sextic is maximal and it is not Galois covered by the Hermitian curve.